已知数列满足,且()(1)求,,(2)由(1)猜想的通项公式;(3)用数学归纳法证明(2)的结果。
全集 求集合.
已知函数,其中,e=2.718 28 为自然对数的底数. (1)设是函数的导函数,求函数在区间上的最小值; (2)若,函数在区间内有零点,证明:.
设椭圆的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|. (1)求椭圆的离心率; (2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.
如图,在三棱柱中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点. (1)求证:平面ABE⊥平面B1BCC1; (2)求证:C1F∥平面ABE; (3)求三棱锥E —ABC的体积.
某校高三年级有男学生105人,女学生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查,设其中某项问题的选择,分别为“同意”、“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息. (1)完成此统计表;
(2)估计高三年级学生“同意”的人数; (3)从被调查的女学生中选取2人进行访谈,求选到两名学生中恰有一人“同意”,一人“不同意”的概率.