.
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,(1)求抛物线的方程;(2)若抛物线与直线无公共点,试在抛物线上求一点,使这点到直线的距离最短。
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成的角的余弦值; (Ⅲ)求面与面所成二面角的余弦值。
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(Ⅰ)求证:PC⊥AB;(Ⅱ)求直线BC与平面APB所成角的正弦值(Ⅲ)求点C到平面APB的距离.
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相同数字的概率;(Ⅱ)求取出的两个球上标号之积能被3整除的概率.
已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则