.
(本小题满分12分)设椭圆C:,F1,F2为左、右焦点,B为短轴端点,且S△BF1F2=4,离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程,(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M,N,且满足?若存在,求出该圆的方程,若不存在,说明理由.
(本小题满分12分)如图,已知三棱柱ABC-A'B'C'侧棱垂直于底面,AB="AC," ∠BAC=900,点M,N分别为A'B和B'C'的中点.(Ⅰ)证明:MN//平面AA'C'C;(Ⅱ)设AB=AA',当A为何值时,CN⊥平面A'MN,试证明你的结论.
(本小题满分12分)最新高考改革方案已在上海和江苏开始实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且x=2y.(Ⅰ)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?(Ⅱ)在(Ⅰ)中所抽取的“不赞成改革”的人中,随机选出三人进行座谈,求至少有一名教师被选出的概率。
(本小题满分12分)已知数列{}的前n项和为Sn,且Sn=2a.n-2.(Ⅰ)求数列{}的通项公式;(Ⅱ)设,求使(n-8)bn≥nk对任意nN恒成立的实数k的取值范围.
(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|3x+2|(Ⅰ)解不等式,(Ⅱ)已知m+n=1(m,n>0),若恒成立,求实数a的取值范围.