.
已知数列满足:,其中为数列的前项和.(1)试求的通项公式;(2)若数列满足:,试求的前项和.
在中,角A、B、C的对边分别为、、,且,,边上中线的长为.(1) 求角和角的大小;(2) 求的面积.
已知抛物线,直线截抛物线C所得弦长为.(1)求抛物线的方程;(2)已知是抛物线上异于原点的两个动点,记若试求当取得最小值时的最大值.
已知函数在处取得极小值.(1)求的值;(2)若在处的切线方程为,求证:当时,曲线不可能在直线的下方.
已知等比数列的首项,公比,数列前项的积记为.(1)求使得取得最大值时的值;(2)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为,证明:数列为等比数列.(参考数据)