.
已知三棱柱,平面,,,四边形为正方形,分别为中点.(1)求证:∥面;(2)求二面角——的余弦值.
已知命题:,命题:方程表示焦点在轴上的双曲线.(1)命题为真命题,求实数的取值范围;(2)若命题“”为真,命题“”为假,求实数的取值范围.
已知在锐角中,内角所对的边分别是,且.(1)求角的大小;(2)若,的面积等于,求的大小.
如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:上,且椭圆的离心率e =.(1)求椭圆的标准方程;(2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.
已知离心率为的椭圆的顶点恰好是双曲线的左右焦点,点是椭圆上不同于的任意一点,设直线的斜率分别为.(1)求椭圆的标准方程;(2)当,在焦点在轴上的椭圆上求一点Q,使该点到直线(的距离最大。(3)试判断乘积“(”的值是否与点(的位置有关,并证明你的结论;