在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(1)求抛物线C的方程;(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.(3)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.
已知三个集合,,,若,,求实数的值。
已知A=,B= ①若,求的取值集合 ②若求的取值集合
设函数 (1)证明:当时, (2)设当时,,求的取值范围。
设为实数,函数。 (1)若,求的取值范围(2)求的最小值 (3)设函数,直接写出(不需要给出演算步骤)不等式的解集。
已知函数,若函数的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数的图象: (1)写出的解析式 (2)记,讨论的单调性 (3)若时,总有成立,求实数的取值范围。