在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.(1)求抛物线C的方程;(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.(3)若点M的横坐标为,直线l:y=kx+与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当≤k≤2时,|AB|2+|DE|2的最小值.
(1)计算:(2)已知集合,求.
设函数是奇函数的导函数,,当时,,(Ⅰ)判断函数的奇偶性;(Ⅱ)证明函数在上为减函数;(Ⅲ)求不等式的解集.
已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线FM被圆截得的线段的长为c,.(Ⅰ)求直线FM的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设椭圆上动点P在x轴上方,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.
设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为.(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为,N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.
已知函数(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求曲线过点处的切线方程.