(本小题满分12分)设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.
本小题満分15分) 已知为直角梯形,//,, , , 平面, (1)若异面直线与所成的角为,且,求; (2)在(1)的条件下,设为的中点,能否在上找到一点,使? (3)在(2)的条件下,求二面角的大小.
(本小题満分14分) 二次函数f(x+1)-f(x)=2x,且f(0)=1 (1)求f(x)的解析式; (2)在区间[-1,1]上,y= f(x)的图像恒在y=2x+m的图像上方,试确定实数m的取值范围。
(本小题満分14分) 已知函数图像上的点处的切线方程为. (1)若函数在时有极值,求的表达式 (2)若函数在区间上单调递增,求实数的取值范围
本小题満分14分) 如图,△OAB是边长为2的正三角形,记△OAB位于直线左侧的图形的面积为。试求函数的解析式,并画出函数的图象.
(本小题15分) 如图在三棱锥P-ABC中,PA分别在棱, (1)求证:BC (2)当D为PB中点时,求AD与平面PAC所成的角的余弦值; (3)是否存在点E,使得二面角A-DE-P为直二面角,并说明理由。