某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰。已知某选手能正确回答第一、二、三、四轮的问题的概率分别为且各轮问题能否正确回答互不影响。(Ⅰ)求该选手进入第四轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率
(本小题满分12分)已知数列为等差数列,且.为等比数列,数列的前三项依次为3,7,13。求(1)数列,的通项公式;(2)数列的前项和。
(本小题满分10分)已知。
(本小题满分10分)选修4-5:不等式选讲设不等式的解集为A,且(Ⅰ)求a的值;(Ⅱ)求函数的最小值。
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(Ⅰ)若直线l与曲线C相交于A、B两点,且,试求实数m值.(Ⅱ)设为曲线上任意一点,求的取值范围.
(本小题满分12分)椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列,记△的面积为S.(Ⅰ)求椭圆C的方程.(Ⅱ)试判断是否为定值?若是,求出这个值;若不是,请说明理由?(Ⅲ)求S的范围.