(本小题满分12分)现有8名奥运会志愿者通晓日语,通晓俄语,通晓韩语。从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求被选中的概率;(2)求和不全被选中的概率.
已知双曲线方程2x2-y2=2.(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
在抛物线 y2=4x上恒有两点关于直线l:y=kx+3对称,求k的范围.
设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.
已知椭圆的离心率为,其中左焦点(-2,0).(1) 求椭圆C的方程;(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
设命题:实数满足,其中;命题:实数满足且的必要不充分条件,求实数的取值范围.