已知椭圆C的左,右焦点坐标分别为,离心率是。椭圆C的左,右顶点分别记为A,B。点S是椭圆C上位于轴上方的动点,直线AS,BS与直线分别交于M,N两点。(1) 求椭圆C的方程;(2) 求线段MN长度的最小值;(3) 当线段MN的长度最小时,在椭圆C上的T满足:T到直线AS的距离等于.试确定点T的个数。
在平面直角坐标系中,椭圆为 (1)若一直线与椭圆交于两不同点,且线段恰以点为中点,求直线的方程; (2)若过点的直线(非轴)与椭圆相交于两个不同点试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及实数的值;若不存在,请说明理由.
标准方程下的椭圆的短轴长为,焦点,右准线与轴相交于点,且,过点的直线和椭圆相交于点. (1)求椭圆的方程和离心率; (2)若,求直线的方程.
已知直线,圆 (1)判断直线和圆的位置关系; (2)若直线和圆相交,求相交弦长最小时的值.
椭圆的长轴长是短轴长的两倍,且过点 (1)求椭圆的标准方程; (2)若直线与椭圆交于不同的两点,求的值.
三角形的顶点,重心 (1)求三角形的面积;(2)求三角形外接圆的方程.