已知椭圆C的左,右焦点坐标分别为,离心率是。椭圆C的左,右顶点分别记为A,B。点S是椭圆C上位于轴上方的动点,直线AS,BS与直线分别交于M,N两点。(1) 求椭圆C的方程;(2) 求线段MN长度的最小值;(3) 当线段MN的长度最小时,在椭圆C上的T满足:T到直线AS的距离等于.试确定点T的个数。
已知全集U=R,A={x|﹣3<x<6,},B={x|x2﹣5x﹣6<0,}.求:(1)A∪B;(2).
已知等差数列中,.(1)求数列的通项公式;(2)若数列的前k项和,求k的值.
已知正实数满足:.(1)求的最小值;(2)设函数,对于(1)中求得的,是否存在实数,使得成立,说明理由.
已知直线:(为参数,a为的倾斜角),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线为:. (1)若直线与曲线相切,求的值; (2)设曲线上任意一点的直角坐标为,求的取值范围.
如图,内接于直径为的圆,过点作圆的切线交的延长线于点,的平分线分别交和圆于点,若.(1)求证:;(2)求的值.