已知三棱锥P-ABC中,平面ABC, ,N为AB上一点,AB=" 4AN," M ,D ,S分别为PB,AB,BC的中点。(1)求证: PA//平面CDM;(2)求证: SN平面CDM.
(课改班做) 如图5,等边△内接于△,且DE//BC,已知于点H,BC=4,AH=,求△的边长.
(本小题满分10分)(平行班做)已知抛物线 y ="x2" -4与直线y =" x" + 2。(1)求两曲线的交点; (2)求抛物线在交点处的切线方程。
(本小题满分12分)已知在中,角,,的对边的边长分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)现给出三个条件:①;②;③.试从中选出两个可以确定的条件,写出你的选择,并以此为依据求出的面积.(只需写出一个选定方案即可,选多种方案以第一种方案记分)
(本小题满分10分)选修4-5:不等式选讲设().(Ⅰ)当时,求函数的定义域;(Ⅱ)若当,恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程如图,已知点,,圆是以为直径的圆,直线:(为参数).(Ⅰ)写出圆的普通方程并选取适当的参数改写为参数方程;(Ⅱ)过原点作直线的垂线,垂足为,若动点满足,当变化时,求点轨迹的参数方程,并指出它是什么曲线.