(本小题共12分) 已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A、B的动点,且面积的最大值为(1)求椭圆C的方程及离心率e; (2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明。
设关于x的不等式|2x﹣1|<t|x|. (1)当t=2时,不等式|2x﹣1|<t|x|+a对∀x∈R恒成立,求实数a的取值范围; (2)若原不等式的解中整数解恰有2个,求实数t的取值范围.
已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线C1的方程为ρ2=8ρsinθ﹣15,曲线 C2的方程为(为参数). (1)将C1的方程化为直角坐标方程; (2)若C2上的点Q对应的参数为,P为C1上的动点,求PQ的最小值.
如图所示,AB是半径为1的圆O的直径,过点A,B分别引弦AD和BE,相交于点C,过点C作CF⊥AB,垂足为点F. (1)求证:AE•BC=AC•BD; (2)求BC•BE+AC•AD的值.
已知函数f(x)=1﹣ax+lnx, (1)若函数在x=2处的切线斜率为,求实数a的值; (2)若存在x∈(0,+∞)使f(x)≥0成立,求实数a的范围; (3)证明对于任意n∈N,n≥2有:.
设定义在R上的函数f(x)对于任意x,y都有f(x+y)=f(x)+f(y)成立,且f(1)=﹣2,当x>0时,f(x)<0. (1)判断f(x)在R上的单调性,并加以证明; (2)当﹣2015≤x≤2015时,不等式f(x)≤k恒成立,求实数k的取值范围.