(本小题共12分) 已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A、B的动点,且面积的最大值为(1)求椭圆C的方程及离心率e; (2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明。
(本小题满分12分) 已知数列中,(其中c为非零常数,),组成公比不为1的等比数列. (I)求c的值; (II)记数列的前项和为,求证
(本小题满分12分) 如图,在四棱锥P - ABCD中,ΔPCD为等边三角形,四边形ABCD为矩形,平面PDC丄平面ABCD,M,N、E分别是AB,PD,PC的中点,AB =2AD. (I)求证DE丄MN; (II)求二面角B-PA-D的余弦值.
(本小题满分12分) 有甲、乙两种味道和颜色都极为相似的名酒各4杯.从中挑出4杯称为一次试验,如果能将甲种酒全部挑出来,算作试验成功一次.某人随机地去挑,求: (I )试验一次就成功的概率是多少? (II)恰好在第三次试验成功的概率是多少? (m)当试验成功的期望值是2时,需要进行多少次相互独立试验?
(本小题满分12分) 已知函数(其中)的图象关于直线x=对称. (I)求的值; (II)求函数在区间【,O】上的最小值.
.(本小题满分13分) 已知数列的首项 (I)证明:数列{-1}是等比数列; (II)求数列{}的前n项和Sn.