(12分)已知a、b、c是互不相等的非零实数.求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
(本小题满分12分)设数列的前n项和为Sn=2n2,为等比数列,且(Ⅰ)求数列和的通项公式; (Ⅱ)设,求数列的前n项和Tn.
(本小题满分12分)已知定义在区间(-1,1)上的函数为奇函数。且.(1)求实数的值。 (2)求证:函数(-1,1)上是增函数。 (3)解关于。
(本小题共12分)已知为等差数列,且,。(Ⅰ)求的通项公式;(Ⅱ)若等比数列满足,,求的前n项和公式
(本小题满分10分)设全集 , 有实数根 求。
二次函数