设曲线C:的离心率为,右准线与两渐近线交于P,Q两点,其右焦点为F,且△PQF为等边三角形。(1)求双曲线C的离心率;(2)若双曲线C被直线截得弦长为,求双曲线方程;(3)设双曲线C经过,以F为左焦点,为左准线的椭圆的短轴端点为B,求BF 中点的轨迹N方程。
设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为的椭圆记作C2(1)求椭圆的标准方程;(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点。当以B1B2为直径的圆经过F1时,求|A1A2|长。(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆,是否存在定圆,使得与恒相切?若存在,求出的方程,若不存在,请说明理由。
已知函数(a是实数),+1。(1)当时,求函数 在定义遇上的最值.(2)若函数f(x)在[1,+)上是单调函数,求a的取值范围;(3)是否存在正实数a满足:对于任意,总存在,使得f(x1)=g(x2)成立,若存在求出a的范围,若不存在,说明理由。
如图,在四棱台ABCD-A1B1C1D1中,DD1平面ABCD,底面ABCD是平行四边形,AB=AD=2A1B1,(1)证明:BB1AC;(2)若AB=2,且二面角A1-AB-C大小为60,连接AC,BD,设交点为O,连接B1O。求三棱锥B1-ABO外接球的体积。(球体体积公式:,R是球半径)
已知数列各项都是正数,且.(1)求数列的通项公式;(2)令,,求数列的前项和.
在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格。(1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较。(2)在甲乙两班的成绩及格的同学中在随机抽取两名同学的试卷做分析,求抽出的两人恰好都是甲班学生的概率.