已知关于的方程的两根为和:(12分)(1)求的值;(2)求的值.
如图,平面⊥平面,为正方形, ,且分别是线段的中点. (Ⅰ)求证://平面; (Ⅱ)求异面直线与所成角的余弦值.
如图, 在空间四边形SABC中, 平面ABC, , 于N, 于M. 求证:①AN^BC; ②平面SAC^平面ANM
下面三个图中,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在左面画出(单位:cm). (1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;
已知圆,内接于此圆,点的坐标,为坐标原点. (Ⅰ)若的重心是,求直线的方程; (Ⅱ)若直线与直线的倾斜角互补,求证:直线的斜率为定值.
如图,AB是过椭圆左焦点F的一弦,C是椭圆的右焦点,已知|AB|=|AC|=4,∠BAC=90°,求椭圆方程.