设函数f(x)=xn+bx+c(n∈N+,b,c∈R).(1)设n≥2,b=1,c=-1,证明:f(x)在区间(,1)内存在唯一零点;(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;(3)设n=2,若对任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范围.
求过直线2x+y+4=0和圆x2+y2+2x-4y+1=0的交点,且满足下列条件之一的圆的方程. (1)过原点;(2)有最小面积.
有一圆C与直线l:4x-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.
给定空间直角坐标系,在x轴上找一点P,使它与点P0(4,1,2)的距离为,求P点的坐标.
正方体ABCD-A1B1C1D1中,P为面A1B1C1D1的中心,求证:PA⊥PB1.
如图所示,点A(0,0,a),在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E、F分别是AC、AD的中点.求D、C、E、F这四点的坐标.