若关于的一元二次方程有实数根.(1)求实数k的取值范围;(2)设,求t的最小值。
如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转90°,试解决下列问题: (1)画出四边形ABCD旋转后的图形;(2)求点C旋转过程中所经过的路径长.
解方程:
如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C(1)若AD=4cm,求BC的长;(2)设AD=x,BC=y,求y与x的函数关系式;(3)梯形ABCD的面积为78cm2,求AD的长
一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为 3+()=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为 . (1)计算:{3,1}+{1,2};(2)动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点O吗? 在图1中画出四边形OABC.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O. 请用“平移量”加法算式表示它的航行过程.
李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:
假设月销售件数为件,月总收入为元,销售每件奖励元,营业员月基本工资为元. (1)求的值;(2)若营业员小俐某月总收入不低于元,那么小俐当月至少要卖服装多少件?