已知复数满足,的虚部是2.(1)求复数;(2)设在复平面上的对应点分别为,求的面积.
(本小题共13分)对于数列,若满足,则称数列为“0-1数列”.定义变换,将“0-1数列”中原有的每个1都变成0,1,原有的每个0都变成1,0.例如:1,0,1,则设是“0-1数列”,令 3,…. (Ⅰ) 若数列: 求数列; (Ⅱ) 若数列共有10项,则数列中连续两项相等的数对至少有多少对?请说明理由; (Ⅲ)若为0,1,记数列中连续两项都是0的数对个数为,.求关于的表达式.
(本小题共13分)在平面直角坐标系中,设点,以线段为直径的圆经过原点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.
(本小题共14分)已知函数..(Ⅰ)当时,求曲线在处的切线方程();(Ⅱ)求函数的单调区间.
(本小题共14分)如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.