本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知的三个顶点在抛物线:上运动,(1). 求的焦点坐标;(2). 若点在坐标原点, 且,点在上,且 ,求点的轨迹方程;(3). 试研究: 是否存在一条边所在直线的斜率为的正三角形,若存在,求出这个正三角形的边长,若不存在,说明理由.
已知椭圆:的离心率为,分别为椭圆的左、右焦点,若椭圆的焦距为2.⑴求椭圆的方程;⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.
为赢得2010年上海世博会的制高点,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:万元, )的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?
如图,在四棱锥中,四边形为平行四边形,,,为上一点,且平面.⑴求证:;⑵如果点为线段的中点,求证:∥平面.
已知,,.⑴若∥,求的值;⑵若,求的值.
(理)(14分)设函数,其中(I)当时,判断函数在定义域上的单调性;(II)求函数的极值点;(III)证明对任意的正整数n,不等式都成立.