(本小题满分12分)设函数,.(1)若,求的最大值及相应的的集合;(2)若是的一个零点,且,求的值和的最小正周期.
已知函数 (1)求的值; (2)求函数的最小正周期及单调递减区间
已知函数(为常数,且)的图象过点. (1)求实数的值; (2)若函数,试判断函数的奇偶性,并说明理由
已知函数,其中. (Ⅰ)讨论的单调性; (Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有; (Ⅲ)若关于的方程有两个正实根,求证:.
已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线被圆截得的线段的长为c,. (Ⅰ)求直线的斜率; (Ⅱ)求椭圆的方程; (Ⅲ)设动点在椭圆上,若直线的斜率大于,求直线(为原点)的斜率的取值范围.
已知数列满足,且成等差数列. (Ⅰ)求的值和的通项公式; (Ⅱ)设,求数列的前项和.