等差数列{}中,++=-12, 且 ··="80." 且公差求:(1)通项公式及前n项和(2)若在每相邻两项中间插入一个新的数得到一个新的数列记为{},求的前n项和.
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA底面ABCD,且SA=2,AD=DC=1 (1)若点E在SD上,且证明:平面; (2)若三棱锥S-ABC的体积,求面SAD与面SBC所成二面角的正弦值的大小
三角形ABC中,内角A、B、C所对的边a、b、c成公比小于1的等比数列,且.(1)求内角B的余弦值;(2)若,求三角形的面积.
已知函数,以点为切点作函数图像的切线,直线与函数图像及切线分别相交于,记. (1)求切线的方程及数列的通项; (2)设数列的前项和为,求证:.
已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为(为常数且). (1)求的值; (2)为抛物线的顶点,,,的面积分别记为,,,求证:为定值.
已知函数. (1)求证:时,恒成立; (2)当时,求的单调区间.