设函数.(1)求的单调区间;(2)当时,若方程在上有两个实数解,求实数t的取值范围;(3)证明:当m>n>0时,.
如图,在直三棱柱中,,,是的中点. (Ⅰ)求证:∥平面; (Ⅱ)求二面角的余弦值; (Ⅲ)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
盒中装有个零件,其中个是使用过的,另外个未经使用. (Ⅰ)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次 抽到使用过的零件的概率; (Ⅱ)从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为,求的分布列和数学期望.
已知函数,. (Ⅰ)求方程=0的根; (Ⅱ)求的最大值和最小值.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值? (Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为,且的最大面积为. (I)求椭圆的方程。 (II)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。