某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔过程相互独立。根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为,,。第二次选拔,甲、乙、丙三人合格的概率依次为,,。(1)求第一次选拔后甲、乙两人中只有甲合格的概率;(2)分别求出甲、乙、丙三人经过前后两次选拔后合格的概率;(3)求甲、乙、丙经过前后两次选拔后,恰有一人合格的概率。
(本小题满分12分)已知函数(1)确定上的单调性;(2)设在(0,2)上有极值,求的取值范围。
(本小题满分12分)已知半圆,动圆与此半圆相切且与轴相切。(1)求动圆圆心的轨迹,并画出其轨迹图形;(2)是否存在斜率为的直线,它与(1)中所得轨迹的曲线由左到右顺次交于A、B、C、D四点,且满足。若存在,求出的方程;若不存在,说明理由。
在△ABC中,的垂直平分线分别交AB,AC于E,E(图一),沿DE将△ADE折起,使得平面ADE⊥平面BDEC(图二)(1)若F是AB的中点,求证:平面ACD⊥平面ADE(2)P是AC上任意一点,求证:平面ACD⊥平面PBE(3)P是AC上一点,且AC⊥平面PBE,求二面角P-BE-C的大小
(本小题满分12分)在中,角A、B、C所对的边分别为,且(1)求C和;(2)P为内任一点(含边界),点P到三边距离之和为,设P到AB,BC距离分别为,用表示并求的取值范围。