已知抛物线,点是其准线与轴的焦点,过的直线与抛物线交于、两点,为抛物线的焦点.当线段的中点在直线上时,求直线的方程,并求出此时的面积.
(本小题满分12分)如图,在四棱锥中,,,,平面平面,是线段上一点,,,.(1)证明:平面;(2)设三棱锥与四棱锥的体积分别为与,求的值.
(本小题满分14分)已知向量与向量垂直,其中为第二象限角.(1)求的值;(2)在中,分别为所对的边,若,求的值.
((本小题满分13分)已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切。(1)求椭圆C的方程;(2)设轴对称的任意两个不同的点,连结交椭圆于另一点,证明:直线与x轴相交于定点;(3)在(2)的条件下,过点的直线与椭圆交于、两点,求的取值范围。
((本小题满分13分)设数列为等差数列,且a5=14,a7=20。(I)求数列的通项公式;(II)若
((本小题满分13分)某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和的函数关系式(写出函数定义域);(2)怎样设计能使取得最大值,最大值为多少?