如图,四棱锥中,底面是平行四边形,,垂足为,在上,且,是的中点.(1)求异面直线与所成的角的余弦值;(2)若是棱上一点,且,求的值.
如图所示,在正三棱柱中,底面边长为,侧棱长为,是棱的中点.
(Ⅰ)求证:平面;
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N (Ⅰ)求E的方程; (Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
若圆过点且与直线相切,设圆心的轨迹为曲线,、为曲线上的两点,点,且满足. (1)求曲线的方程; (2)若,直线的斜率为,过、两点的圆与抛物线在点处有共同的切线,求圆的方程; (3)分别过、作曲线的切线,两条切线交于点,若点恰好在直线上,求证:与均为定值.
过轴上动点引抛物线的两条切线、,、为切点. (1)若切线,的斜率分别为和,求证: 为定值,并求出定值; (2)求证:直线恒过定点,并求出定点坐标; (3)当最小时,求的值.
已知椭圆的一个焦点是,两个焦点与短轴的一个端点构成等边三角形. (Ⅰ)求椭圆的方程; (Ⅱ)过点且不与坐标轴垂直的直线交椭圆于两点,设点关于轴 的对称点为 . (i)求证:直线过轴上一定点,并求出此定点坐标; (ii)求△面积的取值范围。