已知椭圆 x 2 3 + y 2 2 = 1 的左、右焦点分别为 F 1 , F 2 .过 F 1 的直线交椭圆于 B , D 两点,过 F 2 的直线交椭圆于 A , C 两点,且 A B ⊥ C D ,垂足为 P . (Ⅰ)设 P 点的坐标为 x 0 , y 0 ,证明: x 2 0 3 + y 0 2 2 < 1 ; (Ⅱ)求四边形 A B C D 的面积的最小值.
设,,函数 (1)用五点作图法画出函数在一个周期上的图象;(2)求函数的单调递减区间和对称中心的坐标;(3)求不等式的解集; (4)如何由的图象变换得到的图象.
(本小题共13分)已知数列的前项和满足,,.(Ⅰ)如果,求数列的通项公式;(Ⅱ)如果,求证:数列为等比数列,并求;(Ⅲ)如果数列为递增数列,求的取值范围.
(本小题共14分)在平面直角坐标系中,椭圆:的一个顶点为,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线过点,过作的平行线交椭圆于P,Q两点,如果以PQ为直径的圆与直线相切,求的方程.
(本小题共13分)已知函数.(Ⅰ)求函数的极小值;(Ⅱ)过点能否存在曲线的切线,请说明理由.
(本小题共14分)如图,在四棱锥S-ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.(Ⅰ)求证:PQ∥平面SAD; (Ⅱ)求证:AC⊥平面SEQ;(Ⅲ)如果SA=AB=2,求三棱锥S-ABC的体积.