某商场经销某商品,根据以往资料统计,顾客采用的付款期数 ξ 的分布列为
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元. η 表示经销一件该商品的利润. (Ⅰ)求事件 A : "购买该商品的3位顾客中,至少有1位采用1期付款"的概率 P A ; (Ⅱ)求 η 的分布列及期望 E η .
已知函数, (1)求为何值时,在上取得最大值; (2)设,若是单调递增函数,求的取值范围.
如图,已知椭圆的长轴为,过点的直线与轴垂直,直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率 (1)求椭圆的标准方程; (2)设是椭圆上异于、的任意一点,轴,为垂足,延长到点使得,连接并延长交直线于点,为的中点.试判断直线与以为直径的圆的位置关系.
如图,四棱锥的侧面垂直于底面,,,,在棱上,是的中点,二面角为 (1)求的值; (2)求直线与平面所成角的正弦值.
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组得到的频率分布直方图如图所示 (1)分别求第3,4,5组的频率; (2)若该校决定在第3,4,5 组中用分层抽样的方法抽取6名学生进入第二轮面试, ①已知学生甲和学生乙的成绩均在第3组,求学生甲和学生乙同时进入第二轮面试的概率; ②学校决定在这6名学生中随机抽取2名学生接受考官的面试,第4组中有名学生被考官面试,求的分布列和数学期望.
已知的内角、、的对边分别为、、,,且 (1)求角; (2)若向量与共线,求、的值.