设数列是一等差数列,数列的前n项和为,若.⑴求数列的通项公式;⑵求数列的前n项和.
(本小题满分10分)已知函数在处的切线方程(1)求a,b的值;(2)求函数在 值域.
已知椭圆焦点是 和,离心率 (1)求椭圆的标准方程;(2)设点在这个椭圆上,且,求 的余弦值.
已知某物体的位移(米)与时间(秒)的关系是,(1)求秒到秒的平均速度;(2)求此物体在秒的瞬时速度.
(本小题13分) 已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作不与坐标轴垂直的直线,交椭圆于A、B两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设点M(m,0)是线段OF上的一个动点,且,求取值范围;(Ⅲ)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C、B、N 三点共线?若存在,求出定点N的坐标,若不存在,请说明理由.
(本小题12分)正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B.(Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由;(Ⅱ)求直线BC与平面DEF所成角的余弦值;(Ⅲ)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.