如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,点F在CE上,且平面ACE。(I)求证:平面BCE;(II)求二面角B—AC—E的正弦值;(III)求点D到平面ACE的距离。
设函数的定义域为E,值域为F.(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;(2)若E={1,2,a},F={0,},求实数a的值.(3)若,F=[2﹣3m,2﹣3n],求m,n的值.
已知关于x的方程:x2﹣(6+i)x+9+ai=0(a∈R)有实数根b.(1)求实数a,b的值.(2)若复数z满足|﹣a﹣bi|﹣2|z|=0,求z为何值时,|z|有最小值,并求出|z|的值.
已知函数,.(1)若,求证:函数是上的奇函数;(2)若函数在区间上没有零点,求实数的取值范围.
已知命题,命题。(1)若p是q的充分条件,求实数m的取值范围;(2)若m=5,“ ”为真命题,“ ”为假命题,求实数x的取值范围。
设正整数数列满足:,且对于任何,有.(1)求,;(2)求数列的通项.