如图,某货轮在A处看灯塔B在货轮的北偏东,距离为海里,在A处看灯塔C在货轮的北偏西,距离为海里。货轮由A处向正北方向航行到D处时,再看灯塔B在南偏东(1) A处与D处的距离;(2) 灯塔C处与D处的距离。
若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。 (I)求函数的解析式; (II)求函数的单调递增区间。
已知抛物线的焦点为F,以点为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点。 (I)求证:点A在以M、N为焦点,且过点F的椭圆上; (II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由。
已知函数的图象有公共点,且在该点处的切线相同。 (I)用a表示b,并求b的最大值; (II)求证:
已知函数 (I)求数列的通项公式; (II)若数列
某地区举行环保知识大赛,比赛分初赛和决赛两部分,初赛采用选用选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题直接进入决赛,答错3次者则被淘汰,已知选手甲连续两次 答错的概率为(已知甲回答每个问题的正确率相同,且相互之间没有影响) (I)求甲选手回答一个问题的正确率; (II)求选手甲进入决赛的概率; (III)设选手甲在初赛中的答题的个数为并求出的数学期望。