给定直线,抛物线(1)当抛物线的焦点在直线上时,求的值(2)若的三个顶点都在(1)所确定的抛物线上,且点的纵坐标为8,的重心恰是抛物线的焦点,求所在直线的方程。
在椭圆上找一点,使这一点到直线的距离的最小值。
求直线和直线的交点的坐标,及点 与的距离。
已知点是圆上的动点, (1)求的取值范围;(2)若恒成立,求实数的取值范围。
某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.
假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:若由资料知,y对x呈线性相关关系,试求: (1)回归直线方程; (2)估计使用年限为10年时,维修费用约是多少?