(本小题满分14分)如图,已知,.(1)试用向量来表示向量;(2)若向量,的终点在一条直线上,求实数的值;(3)设,当、、、四点共圆时, 求的值.
某车站每天上午发出两班客车(每班客车只有一辆车)。第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为.两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求: (1)请预测旅客乘到第一班客车的概率; (2)求旅客候车时间的分布列和数学期望。
在中,角的对边分别为,满足 (1)求角的大小; (2)若,求的面积.
对定义在区间l,上的函数,若存在开区间和常数C,使得对任意的都有,且对任意的x(a,b)都有恒成立,则称函数为区间I上的“Z型”函数. (I)求证:函数是R上的“Z型”函数; (Ⅱ)设是(I)中的“Z型”函数,若不等式对任意的xR恒成立,求实数t的取值范围.
在平面直角坐标系xOy中,已知圆锥曲线C的参数方程为为参数). (I)以原点为极点,x轴正半轴为极轴建立极坐标系,求圆锥曲线C的极坐标方程; (Ⅱ)若直线l过曲线C的焦点且倾斜角为60°,求直线l被圆锥曲线C所截得的线段的长度.
如图,过半径为4的⊙O上的一点A引半径为3的⊙O′的切线,切点为B,若⊙O与⊙O′内切于点M,连接AM与⊙O′交于c点,求的值.