(本题满分16分)已知函数是奇函数. (1)求实数m的值; (2)判断函数在上的单调性,并给出证明; (3)当Í时,函数的值域是,求实数与
已知抛物线的焦点为,准线为,点为抛物线C上的一点,且的外接圆圆心到准线的距离为. (I)求抛物线C的方程; (II)若圆F的方程为,过点P作圆F的2条切线分别交轴于点,求面积的最小值时的值.
如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=. (Ⅰ)求证:平面PAB⊥平面ABCD ; (Ⅱ)求二面角A-PC-D的平面角的余弦值.
设公比大于零的等比数列的前项和为,且,,数列的前项和为,满足,,. (Ⅰ)求数列、的通项公式; (Ⅱ)满足对所有的均成立,求实数的取值范围.
在△ABC中,角A,B,C所对的边分别为,已知函数R). (Ⅰ)求函数的最小正周期和最大值; (Ⅱ)若函数在处取得最大值,且,求的面积.
设函数. (Ⅰ) 若函数在上为增函数, 求实数的取值范围; (Ⅱ) 求证:当且时,.