先化简,再求值:.
(1)证明: a 2 + 1 b 2 + a 2 ( ab + 1 ) 2 = a + 1 b - a ab + 1 ;
(2)利用(1)式计算: 1 + 1990 2 + 1990 2 1991 2 - 1 1991 .
如图①,正方形 ABDE , CDFI , EFGH 的面积分别为 17 , 10 , 13 ,图②中的 DPQR 为矩形,对照图②求图①中 ABCIGH 的面积.
如图,已知正方形 ABCD 中, BE = BD , CE / / BD , BE 与 CD 交于点 F ,证明: DE = DF .
如图,在矩形 ABCD 中, AB = 12 , AC = 20 ,两条对角线相交于点 O .以 OB , OC 为邻边作第 1 个平行四边形 OB B 1 C ,对角线相交于点 A 1 ;再以 A 1 B 1 , A 1 C 为邻边作第 2 个平行四边形 A 1 B 1 C 1 C ,对角线相交于点 O 1 ;再以 O 1 B 1 , O 1 C 1 为邻边作第 3 个平行四边形 O 1 B 1 B 2 C 1 ;…,依此类推.
(1)求矩形 ABCD 的面积;
(2)求第 1 个平行四边形 OB B 1 C 、第 2 个平行四边形 A 1 B 1 C 1 C 和第 6 个平行四边形的面积.
如图, E , F , G , H 分别是四边形 ABCD 各边中点.
(1)若四边形 ABCD 是任意四边形、则四边形 EFGH 是怎样的四边形?
(2)若四边形 ABCD 是矩形,则四边形 EFGH 是怎样的四边形?
(3)若四边形 ABCD 分別菱形、正方形、等腰梯形时,则四边形 EFGH 又分别是怎样的四边形?
(4)若四边形 EFGH 是矩形,则四边形 ABCD 有什么特征?
(5)若四边形 EFGH 分别是菱形、正方形时,则四边形 ABCD 又有什么特征?