(本小题满分12分)设,求直线AD与平面的夹角。
给定函数(1)a=-4时,求函数的单调区间;(2)当时,求函数的极值点.
已知动点P与双曲线的两个焦点F1,F2的距离之和为4.(1)求动点P的轨迹C的方程;(2)若M为曲线C上的动点,以M为圆心,MF2为半径做圆M.若圆M与y轴有两个交点,求点M横坐标的取值范围.
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
已知数列的前n项和为,且,(1)求证:是等差数列;(2)求;(3)若
已知矩形ABCD所在平面,PA=AD=,E为线段PD上一点,G为线段PC的中点.(1)当E为PD的中点时,求证:(2)当时,求证:BG//平面AEC.