(本小题满分12分)某人向一目标射击,在处射击一次击中目标的概率为,击中目标得2分;在处射击一次击中目标的概率为,击中目标得1分.若他射击三次,第一次在处射击,后两次都在处射击,用表示他3次射击后得的总分,其分布列为:
⑴求及的数学期望;⑵求此人3次都选择在处向目标射击且得分高于2分的概率.
(本小题满分14分)定义在的奇函数有极小值为. (1)求的解析式; (2)若曲线有三条不同的切线,,相交于点,求实数的取值范围.
(本小题满分14分)已知直线经过椭圆:的右焦点和上顶点. (1)求椭圆的标准方程; (2)设直线与椭圆交于、,点关于轴的对称点(与不重合),则直线与轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(本小题满分14分)已知正项数列对任意的,都有. (1)求,的值; (2)求数列的通项公式; (3)设数列的前项和为,当,证明:.
(本小题满分14分)如图,平面平面,其中为正方形,为直角梯形,,,. (1)求证:平面; (2)求点到平面的距离.
(本小题满分12分)某校从参加“百科知识”竞赛的学生中,选取40名学生,将他们的成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题. (1)求分数在内的频率,并补全这个频率分布直方图; (2)从频率分布直方图中,估计本次考试的平均分; (3)若从成绩在的学生中采用分层抽样抽取5人,再从中抽取2人,求抽到的学生中恰好一个成绩在,一个成绩在的概率.