(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。 (1)求异面直线PA与BF所成角的正切值。(2)求证:EF⊥平面PCD。
判断下列函数在给定区间上是否存在零点. (1)f(x)=x2-3x-18,x∈[1,8]; (2)f(x)=x3-x-1,x∈[-1,2]; (3)f(x)=log2(x+2)-x,x∈[1,3].
已知函数f(x)=,g(x)=. (1)证明f(x)满足f(-x)=-f(x),并求f(x)的单调区间; (2)分别计算f(4)-5f(2)g(2)和f(9)-5f(3)g(3)的值,由此概括出涉及函数f(x)和g(x)的对所有不等于零的实数x都成立的一个等式,并加以证明.
指出函数f(x)=的单调区间,并比较f(-π)与f(-的大小.
已知f(x)=(n=2k,k∈Z)的图象在[0,+∞)上单调递增,解不等式f(x2-x)>f(x+3).
求函数y=(m∈N)的定义域、值域,并判断其单调性.