从一副扑克牌(没有大小王)的52张牌中任取两张,求:(1)两张是不同花色牌的概率;(2)至少有一张是红心的概率.
一个袋中装有10个大小相同的小球.其中白球5个、黑球4个、红球1个. (1)从袋中任意摸出2个球,求至少得到1个白球的概率; (2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望.
已知函数 (1)当时,求函数的最小值和最大值 (2)设三角形角的对边分别为且,,若,求的值.
已知函数 (I)若不等式的解集为,求实数的值; (II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.
在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆的极坐标方程; (Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
设函数,其中为常数。 (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数有极值点,求的取值范围及的极值点。