(本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,DM⊥PC,垂足为M.(1)求证:BD⊥平面PAC.(2)求证:平面MBD⊥平面PCD.
寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度,现从调查人群中随机抽取16名,如果所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶);若幸福度分数不低于8.5分,则该人的幸福度为“幸福”.(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望.
已知函数.(1)求函数的最小正周期;(2)在中,若的值.
设函数(1)若,求函数在上的最小值;(2)若函数在存在单调递增区间,试求实数的取值范围;(3)求函数的极值点.
已知椭圆的右焦点为F,A为短轴的一个端点,且,的面积为1(其中为坐标原点).(1)求椭圆的方程;(2)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM,交椭圆于点,证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.
已知等比数列各项都是正数,,,.(1)求数列的通项公式;(2)求证:.