在平面直角坐标系中,给定以下五点A(-2,0),B(1,0)C(4,0),D(-2,),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.
将直尺与三角尺按如图所示的方式叠放在一起.在图中标记的角中,写出所有与互余的角.
如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.⑴ 求点C的坐标;⑵ 连结BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP·BE,能否推出AP⊥BE?请给出你的结论,并说明理由; ⑶ 在直线BE上是否存在点Q,使得AQ2=BQ·EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.
我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为: ……①(其中、、为三角形的三边长,为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式: ……②(其中).⑴ 若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积;⑵ 你能否由公式①推导出公式②?请试试.
如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.(1)设矩形的一边为(m),面积为(m2),求关于的函数关系式,并写出自变量的取值范围;(2)当为何值时,所围苗圃的面积最大,最大面积是多少?
如图,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,则 BC的长度是多少?现再在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?(结果保留三个有效数字)【参考数据:】