(本小题12分)已知椭圆C的左右焦点坐标分别是(-1,0),(1,0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。(1)求椭圆C的方程;(2)若圆P恰过坐标原点,求圆P的方程;
(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响. (Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少? (Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
根据表中数据,能否在犯错误的概率不超过的前提下认为“冰桶挑战赛与受邀者的性别有关”? 附:
(本小题满分12分) 已知数列是递增的等差数列,,是方程的两根. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和.
(本小题满分14分)已知函数,其中是自然对数的底数. (Ⅰ)判断函数在内的零点的个数,并说明理由; (Ⅱ),使得不等式成立,试求实数的取值范围; (Ⅲ)若,求证:.
(本小题满分12分)已知抛物线的顶点为坐标原点,焦点为. (Ⅰ)求抛物线的方程; (Ⅱ)若点为抛物线的准线上的任意一点,过点作抛物线的切线与,切点分别为,求证:直线恒过某一定点; (Ⅲ)分析(Ⅱ)的条件和结论,反思其解题过程,再对命题(Ⅱ)进行变式和推广.请写出一个你发现的真命题,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分).
(本小题满分12分)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用(且)个单位的药剂,药剂在血液中的含量(克)随着时间(小时)变化的函数关系式近似为,其中 (Ⅰ)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时? (Ⅱ)若病人第一次服用2个单位的药剂,6个小时后再服用个单位的药剂,要使接下来的2小时中能够持续有效治疗,试求的最小值.