((本小题满分12分)已知F1、F2分别是椭圆的左、右焦点,曲线C是坐标原点为顶点,以F2为焦点的抛物线,过点F1的直线交曲线C于x轴上方两个不同点P、Q,点P关于x轴的对称点为M,设(I)求,求直线的斜率k的取值范围;(II)求证:直线MQ过定点。
函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0∈[-5,5],使f(x0)≤0的概率是( )
在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为( )
在区间[-1,1]上任取两数a、b,求二次方程x2+ax+b=0的两根(1)都是实数的概率;(2)都是正数的概率.
在等腰Rt△ABC中,在斜边AB上任取一点M,求AM的长小于AC的长的概率.
如图3-3-16所示,在长为4、宽为2的矩形中有一以矩形的长为直径的半圆,试用随机模拟法近似计算半圆的面积,并估计π的值.图3-3-16