((本小题满分12分)已知F1、F2分别是椭圆的左、右焦点,曲线C是坐标原点为顶点,以F2为焦点的抛物线,过点F1的直线交曲线C于x轴上方两个不同点P、Q,点P关于x轴的对称点为M,设(I)求,求直线的斜率k的取值范围;(II)求证:直线MQ过定点。
汽车和自行车分别从A地和C地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知AC=100米。(汽车开到C地即停止) (1)经过秒后,汽车到达B处,自行车到达D处,设B、D间距离为,写出关于的函数关系式,并求出定义域。 (2)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
(1) 已知,化简; (2) 已知,,试用表示
已知函数,; (Ⅰ)证明是奇函数;(Ⅱ)证明在(-∞,-1)上单调递增; (Ⅲ)分别计算和的值,由此概括出涉及函数和的对所有不等于零的实数都成立的一个等式,并加以证明.
已知定义在上的函数满足下列条件:1对定义域内任意,恒有;2当时;3(1)求的值;(2)求证:函数在上为减函数;(3)解不等式 :
如图,在等腰梯形OABC中,.直线(t>0)由点O向点C移动,至点C完毕,记扫描梯形时所得直线左侧的图形面积为.试求的解析式,并画出的图像.