本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,AB=1,AC=.(Ⅰ)证明:CD⊥平面PAC;(Ⅱ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.
(本小题满分12分)已知:、、三点坐标分别为、、,。 (1)若,求角; (2)若,求的值。
(本小题满分10分)求与轴相切,圆心在直线上,且被直线截下的弦长为的圆的方程。
本题满分12分) 已知函数 (Ⅰ)求证:函数在上单调递增; (Ⅱ)对恒成立,求的取值范围.
(本小题满分12分) 已知椭圆C过点,两个焦点为,,O为坐标原点。 (I)求椭圆C的方程; (Ⅱ)直线l过 点A(—1,0),且与椭圆C交于P,Q两点,求△BPQ面积的最大值。
(本小题满分12分) 已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且. (Ⅰ)求数列,的通项公式 (Ⅱ)记,求数列的前项和