(本小题满分15分)已知函数,.(Ⅰ)若函数的图象在处的切线与直线平行,求实数的值;(Ⅱ)设函数,对任意的,都有成立,求实数的取值范围;(Ⅲ)当时,请问:是否存在整数的值,使方程有且只有一个实根?若存在,求出整数的值;否则,请说明理由.
)已知函数(). (1)当时,求函数的极值; (2)讨论函数的单调性; (3)设,若对恒成立,求实数的取值范围.
直三棱柱中,,,、分别为、的中点. (1)求证:; (2)求异面直线与所成角的余弦值.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,. (Ⅰ)求证:平面平面; (Ⅱ)若二面角为,设,试确定的值.
设函数. (1)若函数在时取得极小值,求的值; (2)若函数在定义域上是单调函数,求的取值范围.
某商厦欲在春节期间对某新上市商品开展促销活动,经测算该商品的销售量万件与促销费用万元满足.已知万件该商品的进价成本为万元,商品的销售价格定为元/件. (1)将该商品的利润万元表示为促销费用万元的函数; (2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?