、如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1,SB=.(I)求证BCSC; (II)求平面SBC与平面ABCD所成二面角的大小;(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小
(本小题满分12分)已知函数. (Ⅰ)函数在处的切线方程为,求a、b的值; (Ⅱ)当时,若曲线上存在三条斜率为k的切线,求实数k的取值范围.
(本小题满分12分)已知函数.(1)若为函数的极值点,求实数的值;(2)若时,方程有实数根,求实数的取值范围.
(本小题满分12分)中,角的对边分别为,已知点在直线上.(1)求角的大小;(2)若为锐角三角形且满足,求实数的最小值。
(本小题满分10分)已知函数,且当时,的最小值为2,(1)求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
(本小题满分12分).已知函数().(1)若,求曲线在点处的切线方程;(2)若不等式对任意恒成立.(ⅰ)求实数的取值范围;(ⅱ)试比较与的大小,并给出证明(为自然对数的底数,).