(本小题满分12分)已知函数. (Ⅰ)函数在处的切线方程为,求a、b的值; (Ⅱ)当时,若曲线上存在三条斜率为k的切线,求实数k的取值范围.
(本题满分12分)已知二次函数满足且.(Ⅰ)求的解析式; (Ⅱ)当时,不等式:恒成立,求实数的范围.
(本题满分12分)如图,在四棱锥中,底面,,,是的中点.(Ⅰ)证明;(Ⅱ)证明平面;
(本题满分12分)定义在上的函数满足:①对任意都有;② 在上是单调递增函数;③.(Ⅰ)求的值;(Ⅱ)证明为奇函数;(Ⅲ)解不等式.
(本题满分12分)已知直线经过直线与直线的交点,且垂直于直线.(Ⅰ)求直线的方程;(Ⅱ)求直线与两坐标轴围成的三角形的面积.
(本小题满分14分)设数列的首项R),且,(Ⅰ)若;(Ⅱ)若,证明:;(Ⅲ)若,求所有的正整数,使得对于任意,均有成立.