如图,△ABC中, EF∥BC,FD∥AB,AE=18,BE=12,CD=14,求线段EF的长.
分别以△ABC的二边AC,BC为边向三角形外側作正方形ACDE和正方形BCFG,记△ABC,△DCF的面积分别为S1和S2.①如图1,当∠ACB=90°时,求证:S1=S2;②如图2,当∠ACB≠90°时.S1与S2是否仍然相等,请说明理由.
某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.
已知在△ABC中,AC=8,∠A=30°,∠B=45°,求AB和BC的长.
如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.
已知一次函数物图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(﹣1,1)是否在这个一次函数的图象上.