(本小题满分14分)已知抛物线:和点,若抛物线上存在不同两点、满足.(1)求实数的取值范围;(2)当时,抛物线上是否存在异于、的点,使得经过、、三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.
已知函数.(1)求曲线在点处的切线方程;(2)若对于任意的,都有,求的取值范围.
某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求续驶里程在的车辆数;(3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为 的概率.
如图,在三棱柱中,平面,.以,为邻边作平行四边形,连接和. (1)求证:平面;(2)求证:平面.
已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值.
在数列中,若(,,为常数),则称为数列.(1)若数列是数列,,,写出所有满足条件的数列的前项;(2)证明:一个等比数列为数列的充要条件是公比为或;(3)若数列满足,,,设数列的前项和为.是否存在正整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由.