某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求续驶里程在的车辆数;(3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为 的概率.
)已知,其中均为实数, (1)求的极值; (2)设,求证:对恒成立; (3)设,若对给定的,在区间上总存在使得成立,求m的取值范围.
(本小题满分13分)已知椭圆的离心率,直线与椭圆交于两点,为椭圆的右顶点, (1)求椭圆的方程; (2)若椭圆上存在两点使,求面积的最大值.
(本小题满分12分)已知数列的前项和为,点均在函数的图象上。 (1)求数列的通项公式; (2)设是数列的前项和,求使得对所有都成立的实数的范围.
如图1在中,,D、E分别为线段AB 、AC的中点,.以为折痕,将折起到图2的位置,使平面平面,连接,设F是线段上的动点,满足. (1)证明:平面; (2)若二面角的大小为,求的值.
雅安市某中学随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (1)求直方图中的值; (2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿; (3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)