(本小题满分13分)已知椭圆经过点,离心率为,动点(Ⅰ)求椭圆的标准方程;(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.
(本小题满分14分)已知等差数列的公差为,前项和为,且,,成等比数列.(1)求数列的通项公式;(2)令,求数列的前项和.
(本小题满分13分)已知椭圆:的焦距为,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆的标准方程;(2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点,,①证明:平分线段(其中为坐标原点),②当值最小时,求点的坐标.
(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点,分别为棱,的中点.(1)证明平面;(2)求与平面所成角的正弦值;(3)求二面角的余弦值.
(本小题满分13分)某批产品成箱包装,每箱件.一用户在购进该批产品前先取出箱,设取出的箱中,第一,二,三箱中分别有件,件,件二等品,其余为一等品.(1)在取出的箱中,若该用户从第三箱中有放回的抽取次(每次一件),求恰有两次抽到二等品的概率;(2)在取出的箱中,若该用户再从每箱中任意抽取件产品进行检验,用表示抽检的件产品中二等品的件数,求的分布列及数学期望.
(本小题满分13分)已知函数的最小正周期为.(1)求的值;(2)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在区间上的最小值.