某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.(I)求家具城恰好返还该顾客现金200元的概率;(II)(文科)求家具城至少返还该顾客现金200元的概率.(理科)设该顾客有张奖券中奖,求的分布列,并求的数学期望E.
已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.(Ⅰ)求k的取值范围;(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.
已知函数,其中是自然对数的底数,.(Ⅰ)求函数的单调区间;(Ⅱ)当时,求函数的最小值.
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求证:平面BDGH//平面AEF;(Ⅲ)求多面体ABCDEF的体积.
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值;(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.
已知函数,,且的最小正周期为.(Ⅰ)若,,求的值;(Ⅱ)求函数的单调增区间.