在平面直角坐标系中,O为坐标原点,已知点,,若点C满足,点C的轨迹与抛物线交于A、B两点.(I)求证:;(II)在轴正半轴上是否存在一定点,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.
(本小题满分12分) 设数列满足,且对任意,函数满足. (1)求数列的通项公式; (2)设,记数列的前项和为,求证:.
已知数列是等比数列,且,则 .
设二次函数(,), 满足条件:①当时,,且; ②当时,; ③f(x)在R上的最小值为0. 求最大值m(),使得存在,只要,就有.
若函数对定义域中任意x均满足,则称函数的图象关于点对称. (1)已知函数的图象关于点对称,求实数m的值; (2)已知函数在上的图象关于点对称,且当时,,求函数在上的解析式; (3)在(1)(2)的条件下,当时,若对任意实数,恒有成立,求实数a的取值范围.
已知是定义在区间[-1,1]上的奇函数,且,若,时,有. (1)解不等式; (2)若对所有,恒成立,求实数t的取值范围.