已知不垂直于x轴的动直线l交抛物线于A、B两点,若A,B两点满足AQP=BQP,其中Q(-4,0),原点O为PQ的中点.①求证A,P,B三点共线;②当m=2时,是否存在垂直于-轴的直线,使得被以为直径的圆所截得的弦长为定值,如果存在,求出的方程,如果不存在,请说明理由
设椭圆C: 过点(0,4),(5,0).(1)求C的方程;(2)求过点(3,0)且斜率为的直线被椭圆C所截线段的中点坐标
甲、乙两射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:(1)人都射中目标的概率;(2)人中恰有人射中目标的概率;(3)人至少有人射中目标的概率
设函数,其中.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)求函数的极值点;(Ⅲ)证明对任意的正整数,不等式都成立.
函数,过曲线上的点的切线方程为.(1)若在时有极值,求的表达式;(2)在(1)的条件下,求在[-3,1]上的最大值;(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.
已知椭圆C: 的离心率为,椭圆C上任意一点到椭圆两焦点的距离之和为6.(1)求椭圆C的方程;(2)设直线与椭圆C交于A,B两点,点P(0,1),且满足PA=PB,求直线的方程.